Ongoing socio-economic changes impose innovative and bold mobility choices in daily routines from which significant improvements can result from an environmental perspective as well as in terms of safety and traffic reduction.

The transport sector is responsible for 25 percent of greenhouse gas emissions in Europe, the European Environment Agency's "Transport and Environment Report" found. In first place, as can be easily guessed, is road traffic, followed by maritime traffic and then air traffic. In contrast, rail transport is the most sustainable by far, producing only 0.4 percent of emissions.

The Sustainability of Rail Transport and the Modal Shift.

The FS Group's Sustainability Report states that "overall, the benefit of sustainable mobility through the use of the FS Group's collective means of transport has been estimated for both rail and road passenger transport and rail freight transport at about 4.8 million tons of CO2e saved." Suffice it to say that a traveler to go from Rome and Milan produces 25Kg of CO2 by traveling by train, 67.5Kg of CO2 by car, and 117.3Kg of CO2 by taking the airplane."All in all, the benefit of sustainable mobility through the use of the FS Group's collective means of transportation has been estimated for both rail and road passenger transport and rail freight transport at about 4.8 million tons of CO2e saved."

This is why the issue of sustainability is at the heart of the FS Group's latest 2022-31 Business Plan, which on the one hand encourages the so-called modal shift, i.e., a change in the travel habits of people and goods, and on the other aims to achieve carbon neutrality by 2040, 10 years ahead of the target set by the EU.

Rail transportation also has to deal with the open issue of emissions from generating the electricity needed to move trains and operate stations and the rail network, which is why the State Railways has launched a more than 1.6 billion euro self-generation plan.

The goal is to produce about 2.6 TWh of energy, which would guarantee to reduce CO2 emissions by about 800,000 tons. A decisive move for the decarbonization of transport: renewable and clean energy will come from real photovoltaic fields placed on the roofs of stations and other buildings of the FS Group, and for this, a widespread monitoring of the entire real estate will be initiated to identify areas and buildings to be used for this purpose.

An ambitious project with enormous potential, but it is not the only one.

Circular Economy and Corporate Sustainability

We also recall Sustainable Construction Sites, which involves the high-speed line to be built between Naples and Bari. This Infrastructure is the first work certified with the Envision Protocol in Europe and has achieved the Platinum level, the highest level achievable. Special attention has been paid to the management of excavated materials, which provides for a reuse of more than 96 percent of the excavated land, in full circular economy view. At the Florence Passante construction sites, these excavated materials are transported precisely by train, with significant savings in terms of pollution and road traffic congestion.

The challenge of digitalization: predictive maintenance

Modern mobility is not just mobility. It also requires very advanced integration with the issues of connectivity and digitization, issues on which the FS Group is far ahead.

It is precisely digitization that plays a crucial role in making effective predictive maintenance, which in the transportation sector is undermining "reactive" maintenance that creates huge costs in terms of time and inconvenience. Following reactive maintenance, a certain component is changed when it breaks down, resulting in failure, delay and inconvenience to passengers, expenses that cannot be budgeted for and are often incurred by having to take emergency action. Not to mention the danger and possible consequences to people.

What is predictive maintenance based on instead? On the collection, analysis, and processing of data-everything is monitored, from the network to the support facilities to the rolling stock, which thus becomes much safer. The FS group has deployed its two main entities: Trenitalia, which is responsible for fleet management and efficiency, and RFI which is responsible for managing the rail network. With this paradigm shift comes a new methodology that aims to prevent breakdowns and improve the efficiency of maintenance activities, precisely through data collection and analysis.

Wear, temperatures and vibrations are among the most important aspects to monitor, since if these parameters are out of control the life cycle of the components involved is greatly shortened. Of course, the fundamental acquisition of data with thousands of sensors on the vehicles and structures is then accompanied by their analysis and processing, activities on which personnel must also be constantly updated.

An example of this approach is Trenitalia's DMMS (Dynamic Maintenance Management System) that has been in operation for a few years and allows real-time monitoring of the entire fleet of regional, Intercity and Frecce trains: each train sends 5,000 pieces of information per minute.

A very detailed level of continuous analysis that no human being could carry out as effectively.

Get in touch with us

The Industrial IoT (IIoT) represents the application of the Internet of Things (IoT) in the industrial domain. Researcher Kevin Ashton has defined IoT as the set of technologies that enable the control, monitoring, and transfer of information by connecting devices to the Internet.

The IIoT is a verticalization of the IoT, focused on the industrial ecosystem and enabled by technologies such as cybersecurity, cloud computing, edge computing, big data analytics, artificial intelligence and machine learning.

IIOT MARKET

According to a report by Industry ARC, the Industrial IoT market will exceed $771 billion by 2026, with an estimated compound annual growth rate of 24.3 percent. Real-time data enables better management of the production process and a clear view of business performance.

ARCHITECTURE OF AN IIOT SYSTEM

An IIoT system consists of four levels:

Device layer: hardware, machines and physical sensors.

Network layer: communication protocols, cloud computing and WiFi networks for data transfer.

Service layer: applications and software for analyzing and transforming data into viewable information.

Content layer: user interface devices.

BENEFITS OF INDUSTRIAL IOT

IIoT enables the monitoring and predictive maintenance of strategic infrastructure, using AI and machine learning to predict risks and suggest preventive measures. For example, in the infrastructure sector, IoT sensors and predictive algorithms enable continuous monitoring of tunnels, bridges, buildings and sewer systems, reducing energy and maintenance costs.

CRITICAL IIOT ISSUES

Cybersecurity is a challenge for IoT devices, as current measures are inferior to traditional systems. In addition, the lack of standardization in industrial communication protocols complicates the interconnection between machines with varied hardware.

IIOT WITH FRONTIERE

Frontiere's Team specializing in IIOT can support you in the remote management and control of complex infrastructure systems. Contact us and discover the ideal solution for your company's needs.

Get in touch with us

The IoT has given rise to a concept known as 'Industry 4.0', in which industrial production is made more efficient and intelligent through the connection of devices and the collection of real-time data.

Some examples of the application of IoT in the manufacturing industry include:

Automation and Process Monitoring

Through the IoT, machines and production facilities can communicate with each other and with management systems, enabling the automation of production processes. Sensors collect data on production, quality and resource utilisation, providing information to optimise operations and reduce waste.

Predictive Maintenance

The IoT has a significant impact on industrial automation, enabling more efficient production, predictive maintenance and improved safety. The integration of connected devices and artificial intelligence systems makes it possible to optimise production processes, reduce downtime and improve product quality.

Supply Chain Traceability

The integration of the IoT into supply chain management provides greater traceability and visibility into the movement of materials and products throughout the supply chain. IoT devices, such as RFID (Radio-Frequency Identification) tags, enable the automatic tracking and recording of the passage of products, providing real-time information on their location and status. This simplifies inventory management, reduces errors and optimises logistics processes.

Conclusions

In conclusion, the Internet of Things (IoT) has had a significant impact on the manufacturing industry, giving rise to the concept of 'Industry 4.0'. The adoption of IoT has made it possible to connect devices and collect data in real time, leading to more efficient and intelligent industrial production.

Automation and process monitoring have improved through communication between machines and management systems, enabling optimisation of operations and reduction of waste. In addition, IoT has enabled the implementation of predictivemaintenance, allowing companies to predict and prevent machine breakdowns and downtime.

Finally, the integration of IoT into supply chain management has improved the traceability and visibility of products throughout the supply chain, optimising logistics processes and reducing errors.

The IoT has opened up new opportunities for the manufacturing industry, enabling greater operational efficiency and better resource management. It is clear that the IoT will continue to play a key role in the evolution of Industry 4.0 and the innovation of the manufacturing sector.
The adoption of the IoT represents both a challenge and an opportunity for companies, which will have to be prepared to exploit its full potential to remain competitive in the global marketplace.

Get in touch with us
logo-frontiere
LinkedinInstagramYoutubeFacebookTwitter
Privacy policy
Copyright 2024 Frontiere
FRONTIERE Srl
Headquarters in Via Oslavia, 6 - 00195 Rome, RM | C.F. and VAT 17464921000
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram